MARINE ENVIRONMENT STUDENTS MANUAL

Suitable for syllabus in

Marine Studies and Marine Education (Queensland)
Marine Studies (New South Wales)
Maritime Studies (South Australia)
Environmental Education (Victoria and Northern Territory)
Senior Science Marine Studies and Nautical Studies (Western Australia)

and companion to the textbook

MARINE STUDIES

A course for senior students

by

Bob Moffatt B Sc, Dip Ed, Grad Dip.Ed Admin, MACE

Wet Paper

MARINE

STUDIES

QUALITY ASSURANCE

Wet Paper is committed to total quality management and the implementation of a quality system throughout each project undertaken, to ensure the highest standards of professionalism, ethical practice and client and customer satisfaction.

Quality assurance is the responsibility of the manager who has the authority to manage all functions to quality, and is the nominated Quality Assurance Manager as defined in AS 3901/ISO 9001.

To ensure the best possible use of this book for quality education, Wet Paper offers the following services.

- For schools who purchase single copies, a free telephone support service is available in office hours by simply telephoning Wet Paper on (07) 55 972 806 or by faxing your request or leaving a message on our answering machine on (07) 55 39 4187 any time.
- 2. For schools who use class sets of the book, an inservice program is available for staff wishing to implement any of the activities. A program can be arranged by contacting the manager.

Wet Paper also has a commitment to actively support teacher associations and conservation groups with an interest in marine studies education.

- 3. Schools or teachers can write for our complimentary newsletter which outlines conference dates and other seminars where free workshop sessions are held explaining any activities in this book.
- 4. Equipment used in this book is available for training purposes at our Wet Paper Laboratory and Classroom during office hours. Our address is 14 Milbong Terrace, Ashmore, Queensland, 4214.
- 5. If we cannot answer your questions, Wet Paper has a team of highly qualified consultants who are willing to assist.
- 6. As this is the first edition, we welcome comments on any of the activities. In time, workbooks will be written to indicate the time each activity takes, its sequence and core questions relevant to national stillards. As many exercises could take more than two hours, some selection of questions may be necessary before setting students homework.

BEST ENVIRONMENTAL PRACTICE

Each school should develop a best environmental practice statement for marine studies. To help schools do this, Exercise 141 has been prepared as a 'discussion starter'.

In Sections 1 and 2 it is a requirement of some activities to collect specimens of sand, live animals or plants or travel on an excursion into the marine environment.

It is pointless teaching conservation in Section 4 if practical aspects of it are not demonstrated. The following points are worth considering in your school's conservation code:

- 1. Can a photograph substitute for the collection of a live specimen?
- 2. Is all waste collected and taken back to school? Encourage students not to use rubbish bins at the seaside as these are often tipped over or serounged through by animals looking for a feed.
- 3. Take home bottles and cans that can be recycled at school and if chemicals are used, bring home all waste in slop bottles.
- 4. Wet Paper encourages students to study live specimens so that a deep love can be generated for life on earth. However the following considerations are recommended:
 - Avoid collecting yourself until trained. Consider buying from a collector who has a permit and is restricted to numbers and can be managed. Most collectors are skilled in the handling of live animals and know about stress and mortality rates. Use an aquarium shop to obtain specimens and find out what conditions would give the specimens the greatest chance of survival.
 - Use hardy freshwater species to illustrate marine examples. Many principles of life in water are the same in both fresh and marine environments.
 - In the activities selected, it is hoped we have chosen the toughest of animals and plants.
 - The aim of students working with live animals and plants is to instil a love of the animals and plants of the sea. Consider buying fish and prawns from a fish shop and avoid any other dissections unless you are specifically researching that animal.

CONSULTANTS

Dave Claridge Marine Education Consultant, Maryborough

Graham Anderton South Fremantle Senior High School

Gwen Connolly St. Augustine's College, Cairns

Sue Cerato Benowa State High School

Len Couzins Benowa State High School

Peter Hamlyn North Mackay State High School

Lindsay Holthouse Senior Secondary Assessment Board, SA

Tony Isaacson

Hallett Cove High School

Geoff Jensen Innisfail State High Schoo

Phil King Coffs Harbour High School

Kym McKauge Department of Primary Industries

> Ken Naclean Babinda State Nigh School

John Maloney St. Augusting's College, Cairns

Creg McGarvie Pioneer SHS College, Mackay

Mick O'Connor Ballina State High School

Mark Rickard Benowa State High School

Pamela Rutledge St. Hilda's School, Perth

Kathy Steggles Whitsunday Anglican School, Mackay

John Smith Environmental Education Consultant, SA

> Jan Thornton Sea World

Tim Ryan Maryborough State High School

Alan Wolfe South Fremantle Senior High School

ACKNOWLEDGEMENTS

Permissions

Thanks to the following for giving permission to Wet Paper to reproduce their works Australian Maritime Safety Authority, Australian Fisheries Management Authority, Great Barrier Reef Marine Park Authority, Sea World, MESA Gold Coast, Surfrider Foundation, Queensland Transport

Principal photographer

Bob Moffatt

Other photographs

Geoff Jensen, Tim Ryan, Australian Fisheries Management Authority

Principal illustrator

Mark Moffatt

Other illustrations

David Tulip, Bernie Cook, Jack Marsh, Tony Edwardson, Jan Thornton, Sue en Bye Moffatt, Bob Moffatt, Queensland Transport, Great Barrier Reef Marine Park A hority ect Reef Ed)

Additional advice and assist

Thelma Moffatt, John Maloney, Tony Failes, Damian Klarwein, ger Nic , Geoff ensen, Alan Wolfe, Paul Sumpter, Jan Thornton, Kym McKauge, Peter Hamlyn, Tua Redden Annaliese Caston, John Foss, Greg McGarvie, Phil King, Len Couzins, Ward Nicholas, Malcon , John Foss, Matt Keys, Michael rn Leggi Wilkinson, Tom Alletson, Ian Tibbets, Nick McMorrow, Bill Fo es, Norman Lopez, Erna Walraven pielman and Derek

Teacher and lecturers

Jack Marsh, David Tulip, Cam McRobbie Tom Hailstone, Prof Stephenson, Jack Greenwood. Don Fie Don Griffiths, Keith Tronc

sors Supporters an ad

Barbara Clem, Carol Fortino, War Beezley, Ann Coopersmith, Peter Stannard, Bill Stapp, Alastair Mitchell, Paul Threlfall, Jill Ga nartt, Der Foster, Richard Harris, Dawn Couchman, Geoff Ma n Alcock, Don Fee, Alan Perry, Angus Jackson, Sam Mercer, Len Zell, Rob Hear v. D . Sh y He y, Graham Nash, Dave Olreichs, Phil Bishop, Al Greenfiel, Kathy Smith, Dawn Couchman ob Critch Steggels, John Maloney ul Su rter, Dave Mitchell, John and Meg Kennedy, Michael Michie, Keith The Coleman, Neil Solomons, Bill Templeman, Jan and Barry Alty, Greg Enchielmier, Malcor urner Smith, Noel Gillin Brow Peter Stevens, Ian Neil, James Young, Mel Phillips, Bob Ellis, Martin Tellermans, John Bro rnton, Kelvin Rodgers, Tertius DeKluyver, Perry Kaigan, Ian Gibbs, Jan Th Dennis Bridger, Steven Byers, Carol Clavery, Cyril Connell, Tony Failes, Terry B Trevor L som on, Jay Oliver, Bill Dobbie, Sue Cerato, Ann Summers, David Kopelke, Marg Mark W Wa Mitchell, Greg Martin, Steve Hall, Peter Holm, Rod Waldon, Dave Reid, Jim Evans, Ann ard, Vera Weitsz, David Gorwin, Stana Hodge, Meran Kilgour and Carol Clavery, John ield, John Ho Ken Gilbert, Bill Dobbie, Sue Oats, Kelvin Rodgers, Carol Clavery, Jill Agnew and ly Zoled ummers, Margaret Evans, Len Couzins, Bill Baumann, Peter Stannard, Fabian Fay, Col Reinhardt and Mike Julian

Mentors

Jack Marsh, Cyril Connell, Ken Gilbert, Dave Tulip

Schools equipment and students

Grateful acknowledgement is made of the following schools who assisted with photographic shoots, equipment and advice: Innisfail State High School, Pioneer State High School, Benowa State High School, South Fremantle Senior High School, Mackay North State High School and Sea World Project Neptune

Cover

Merv Smith Studio Designs

CONTENTS

SECTION 1 NON - LIVING ASPECTS OF THE SEA

Exercise 1 Sea water salts Exercise 2 Salinity	11 12
Exercise 2 Salinity Exercise 3 Sea water density	
	14
Exercise 4 Waves	
Exercise 5 Longshore drift	
Exercise 6 Longshore drift field work	
Exercise 7 Forces that cause ocean water to move	24
Exercise 8 Ocean Currents	26
Exercise 9 Currents around Australia and New Zealand	28
Exercise 10 Local Currents	30
Exercise 11 Ocean shapes Exercise 12 Hypothetical Bay	32
Exercise 12 Hypothetical Bay Exercise 13 Hypothetical Reef	34 3 6
Exercise 15 hypothetical keep Exercise 14 Beach formation and erosion processes	38
Exercise 14 Deach Formation and erosion processes	40
Exercise 15 Orbit Fields Exercise 16 Sand per cent composition	40
Exercise 10 SAND PER CENT COMPOSITION	44 48
Exercise 17 Deach profiles Exercise 18 The active beach system	52
Exercise 10 The active beach system	52
Exercise 19 DEACH ERCORD MIND MAPPING Exercise 20 DDT in the food chain	56
Exercise 20 DDT in the body chain Exercise 21 Management of Longshore drift	58
Exercise 22 ST. VINCENT CHILF	60
Exercise 22 Practice essay on beach erosion	63
Exercise 24 Methods used to combat oil pollution	64
Exercise 25 Marine oil pollution	65
Exercise 26 Effect of oil on feathers	66
Exercise 27 Oil spill in Hypothetical Bay	68
Szercise 28 Voint Break	70
Exercise 29 Making a beach walkway	72
EXERCISE 30 SEAWATER TEST	74
Exercise 31 Beaches test	78

SECTION 2 LIVING ASPECTS OF THE SEA

Exercise 32 Key terms	81	
EXERCISE 33 PLANKTON OF YOUR LOCAL AREA	82	
Exercise 34 Plankton three level guide	88	
Exercise 35 Life cycles	90	
Exercise 36 Associations	92	
Exercise 37 Sponges	94	
EXERCISE 38 ADAPTATIONS OF PLANKTON	96	
Exercise 39 Anemones and corals	98	
Exercise 40 Fish dissection	100	
Exercise 41 Sharks and rays	104	
EXERCISE 42 THE IMPORTANCE OF MANGROVES	106	
Exercise 43 Seagrasses	108	
Exercise 44 Mangrove transect		
Exercise 45 Mangrove life cycles	112	
Exercise 46 How to build and use a plankton net	114	
Exercise 47 Sampling methods	116	
Exercise 48 Osmosis	120	
EXERCISE 49 ENVIRONMENTAL EFFECTS OF FRESHWATER	122	
Exercise 50 Rocky shore habitats	124	
Exercise 51 Rocky shore Life	126	
Exercise 52 Looking at marine life	128	
Exercise 53 Barnacles	130	
Exercise 54 Gastropods	132	
Exercise 55 Algae	134	
Exercise 56 Corals	136	
Exercise 57 Echinoderms	138	
Exercise 58 Cephalopods	140	
Exercise 59 Crabs	142	
Exercise 60 Rocky shore ecosystem study	144	
Exercise 61 Drawing food chans	148	
Exercise 62 Marine Ecosystems	150	
Exercise 63 Adaptations	152	
Exercise 64 Phytoplankton	154	
Exercise 65 Seawerds	156	
Exercise 60 Adaptations of fish	158	
Exercise 67 Streamlining	160	
Exercise 68 Viscosity	162	
Exercise 69 Buoyancy	163	

EXERCISE 70 DENSITY OF SEA WATER EXERCISE 71 WHAT MAKES ADAPTATIONS NECESSARY? EXERCISE 72 COMPARING AND CONTRASTING MANGROVES AND ESTUARIES EXERCISE 73 SAND DUNE PLANTS **EXERCISE 74 PRAWN DISSECTION** EXERCISE 75 HOW TO SET UP A MARINE AQUARIUM **EXERCISE 76 FOOD CHAINS** EXERCISE 77 ARTEMIA LIFE CYCLE EXERCISE 78 FIBREGLASS FISH EXERCISE 79 PRESSING SEAWEEDS EXERCISE 80 TURTLES EXERCISE 81 SEA BIRDS EXERCISE 82 MARINE MAMMALS **EXERCISE 83 CLASSIFICATION** EXERCISE 84 CLASSIFICATION KEY EXERCISE 85 SEAWEED CLASSIFICATION EXERCISE 86 UNDERWATER SLATE EXERCISE 87 NEKTON TEST **EXERCISE 88 BENTHOS TEST EXERCISE 89 RESEARCH QUESTIONS**

204 208

164

166

168

170

172

176

178

180

184

186

188

190

192

1Q/

10

200

201

SECTION 3 COMMERCIAL USES

Exercise 90 Abalone stock	209
Exercise 91 The Australian herring	212
Exercise 92 South east fishery	214
Exercise 93 Ecotourism	216
Exercise 94 Mariculture	218
Exercise 95 Aquaculture projects	220
Exercise 96 Shipping	224
Exercise 97 Ecotourism stirver	226
Exercise 98 Is tourism good for the community?	228
Exercise 99 Balkast water problems	230
Exercise 100 Positive and negative effects	233
Exercise 101 Starfish prot study in Hypothetical Bay	234
Exercise 102 Marpol	236
Exercise 103 Master Mariners story	238
EXERCISE 104 AT THE FISH SHOP	240
Exercise 105 Prawn fishery economics	242
Exercise 106 The Orange roughy	246
Exercise 107 Adopt a ship	249
Exercise 108 Commercial fishing game	250
Exercise 109 What type of farm for me?	252
Exercise 110 Aquaculture research	254
Exercise 111 Test	255

MANAGEMENT AND CONSERVATION

Exercise 112 Key Terms	257
Exercise 113 Attitudes and values	258
Exercise 114 Ecological sustainable development	260
Exercise 115 Sea rights - three level guide	262
Exercise 116 Territorial waters and AFZ	264
Exercise 117 Multiple use	266
Exercise 118 Management strategies	268
EXERCISE 119 WHY ARE MEPAS NECESSARY?	270
Exercise 120 Trade waste	272
Exercise 121 Local management issues	274
Exercise 122 Adopt an NGO	276
Exercise 123 MESA Seaweek and Ocean Care Day	278
Exercise 124Live fish exports	280
EXERCISE 125 OIL AND GAS	282
EXERCISE 126 LOCATIONS OF AUSTRALIAN FISHERIES	284
EXERCISE 127 CONSERVATION PRINCIPLES	286
EXERCISE 128 RIPARIAN HABITAT ASSESSMENT	288
Exercise 129 Water velocity in the catchment	290
Exercise 130 Sourcing litter pollution	292
Exercise 131 Conflicts	294
Exercise 132 Dilemma exercise	296
Exercise 133 Writing a newspaper article	298
Exercise 134 Future problem solving	300
Exercise 135 Venetian Island	302
Exercise 136 Tweed river walls	304
Exercise 137 Managers and user groups	306
Exercise 138 Management proposals	308
Exercise 139 Hypothetical bay 2010	310
Exercise 140 Controversy at Hypothetical Bay?	314
Exercise 141 Best environmental practices	320
Exercise 142 Proplem solving	324
Exercise 143Images essay	326
Exercise 144 Whale Bay game	327
Exercise 145 Traditional management methods	330
Exercise 146 Drain stencilling	332
Exercise 147 Audiovisual materials list	335
SUBJECT INDEX	336
Equipment index	336

SECTION 1 Non - LIVING ASPECTS

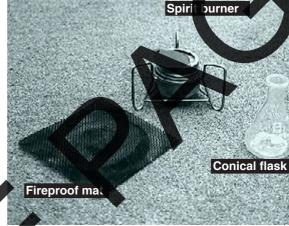
EXERCISE 1 SEA WATER SALTS

Метнор

- 1. Measure out half a teaspoon of salt and empty it into the conical flask.
- 2. Now add enough water to cover and dissolve the sa
- 3. Set up the equipment as shown in Figure 1.1. Now light the spirit burner by using the manufacturers instructions and adjust the burner to produce a gentle flame under the flask.
- 4. Put on the safety goggles and keep them on until all the salt has evaporated (see safety warning).
- 5. When the water has nearly all evaporated, ex the burner and let the flask cool.
- 6. Take the stirring rod and scrape the salt out and onto a piece of filter paper.

QUESTIONS

- 1. Describe what happens to the water as it heats up.
- 2. What happens when salt water evaporates?
- 3. What happened when almost all the water was gone?
- Did you get the same amount of salt back?


textbook page 352 to define the following

a. Solute.

- b. Solvent.
- c. Solution.

Research

- 1. Find out how salt is made commercially.
- 2. http://seawifs.gsfc.nasa.gov/ocean_planet.html

gure 2.1. Experimental equipment

MATERIALS AND EQUIPMENT (PER GROUP)

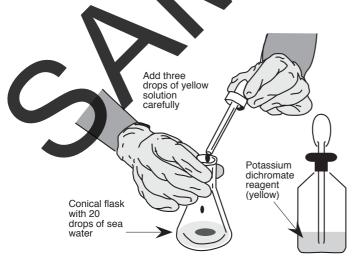
- methylated spirits burner
- safety goggles
- table salt
- fireproof mat, matches, oven mitts
- very clean 50 mL conical flask and glass stirring rod
- filter paper
- tap water
- tea spoon

SAFETY WARNING

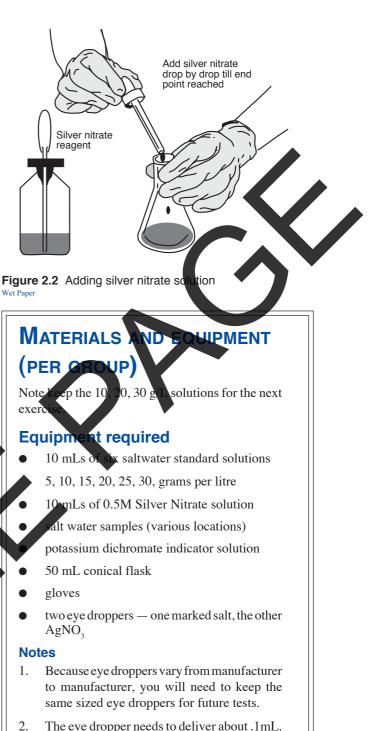
1. When the sea water solution has nearly all evaporated, it may "spit" up. To stop this remove the flame and let the remainder

evaproate under its own heat. 2. All equipment will get very hot

All equipment will get very hot after a short time, so make sure you let it cool before touching it.


Exercise 2 Salinity

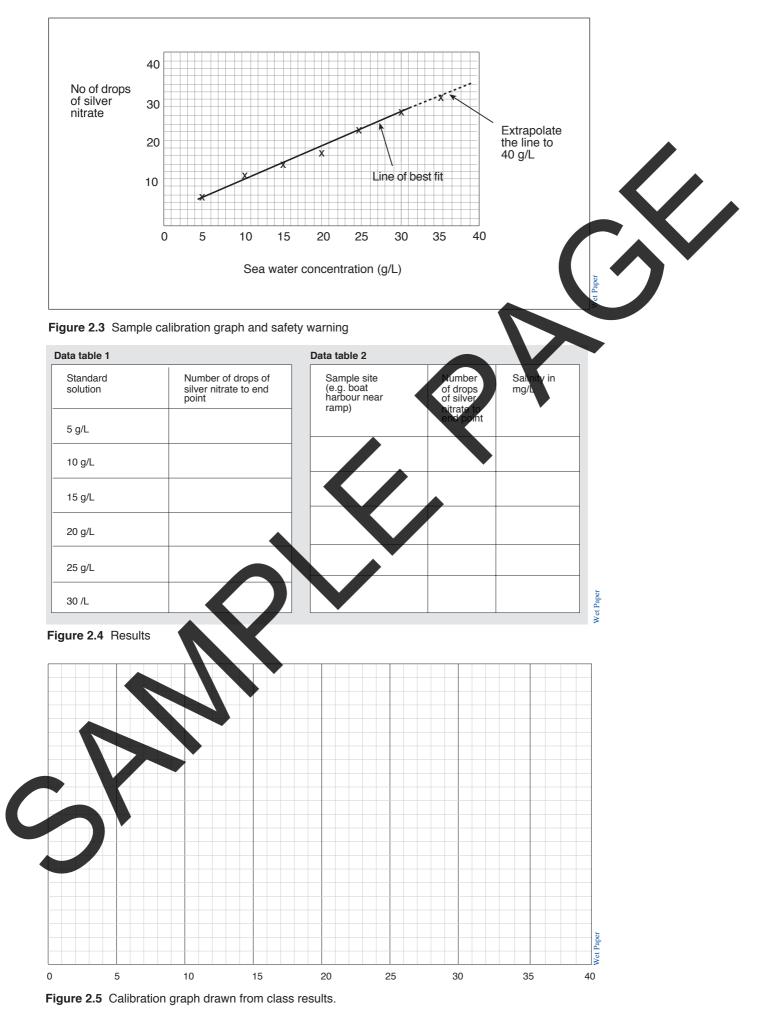
Метнор


- 1. Divide up the class into six groups so that each group will work on a different gm/Litre saltwater solutions.
- 2. Collect 20 drops of your gm/Litre saltwater solution and add this carefully to the 50 mL conical flask.
- 3. Now add 3 drops of potassium dichromate indicator so as to just turn the sea water yellow as shown in Figure 2.1.
- 4. Add the silver nitrate drop by drop giving the conical flask a swirl after each drop as shown in Figure 2.2. Make sure someone counts each drop.
- 5. You will notice that a colour change appears under the drop as it falls into the sea water solution.

When these dark red patches hang around for an increasingly longer time, start swirling after each drop.

- 6. When one drop turns all the sea water a reddish brown you have reached what we call the end point.
- 7. Record the number of drops to end point in data table in Figure 2.4 beside the g/L entry.
- 8. Now collect the results from the other groups noting the number of drops to end point for each.
- 9. Use your class results from data table 1 to draw a calibration graph in the space provided in Figure 2.5 for the determination of salinity using the eye dropper technique. Your graph should look something like Figure 2.3. Extrapolate the graph to predict 35 000 and 40 000 mg/L.
- 10. Now use an unknown sample to determine its salinity and record your results in table 2 Figure 2.4.

3. Potassium dichromate is poisonous (see safety


SAFETY WARNING

warning below).

2.

- 1. Potassium dichromate is a health risk and should be used carefully and in drops only from a well marked bottle.
 - Silver nitrate is hazardous and causes staining of the hands.

3. Gloves must be worn during this experiment.

EXERCISE 3 SEA WATER DENSITY

Метнор

Part A

- 1. Sharpen two pencils to exactly the same length.
- 2. Now dissolve a teaspoon of salt in 100 mLs of water.
- 3. Place the two test tubes in the rack provided and 3/4 fill one with fresh water and the other with salt water.
- 4. Now place the pencils in each.
 - Can you see a difference? Which is higher? Record your results in Figure 3.1 under Part A.

Part B

- 5. Now take out one of the pencils and use a pen and ruler to mark down 0.5 cm intervals as shown in Figure 3.1.
 - We will call this your hydrometer.
- 6. Fill each of the 5 test tubes with the solutions labe 0, 10, 20, 30, and 40 grams per litre.
- 7. Now carefully drop the pencil into each test tube shown in the photograph.
 - Read the scale and record your results in the Table in Figure 3.2.

er te

- 8. Now repeat the experiment with the d
 - Record each of the results in the table as before.

QUESTIONS

1. Now plot a graph of the standard solution (x axis) versus the hydrometer reading (y axis).

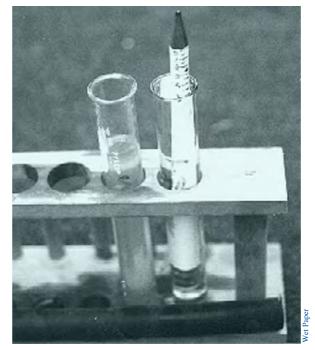
Describe how the graph changes

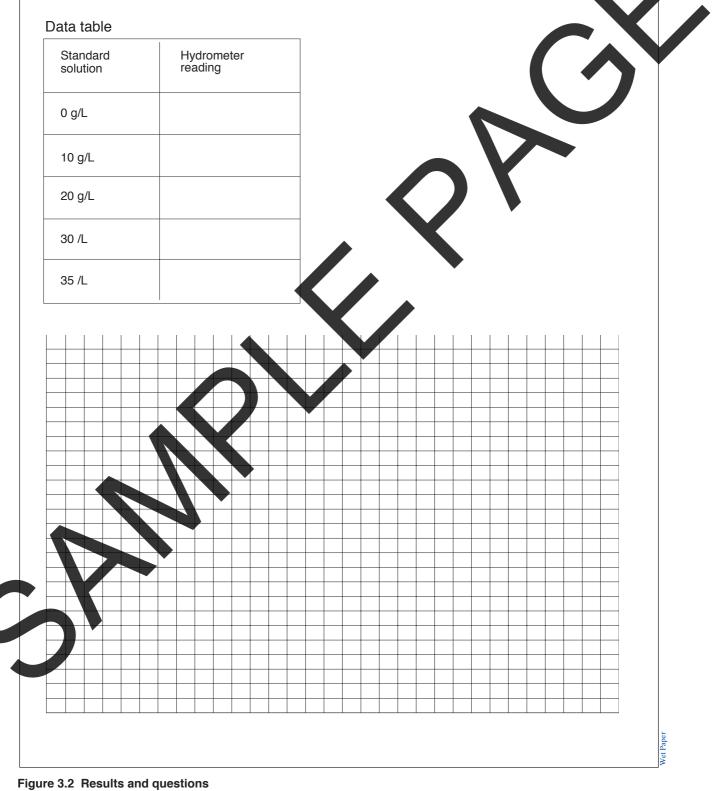
- 2. What does a hydrometer measured
- 3. Which is more dense, salt water of fresh was
- 4. If the tide was coming into a river, would the sea water be found on the top of the fresh water or the bottom?
- 5. What do you think a salt water wedge is in an estuary?

MATERIALS AND EQUIPMENT (PER GROUP) Part A • 100 mL beaker • 2 percils • test tubes (equiple size) • 0 mL beaker • 100 mL beaker

Part B

- 5 test tubes (equal size)
- pen and ruler
- 10 mLs of 5 saltwater standard solutions labelled
 0, 10, 20, 30 and 40 grams per litre




Figure 3.1 Experimental set up for Part B

RESULTS

Part A

Which pencil floated higher?

Part B

rigure 0.2 mesuits and question